Exponentielles Wachstum
bzw. exponentieller Verfall

10. Klasse Realschule und Gymnasium
Information

Frage:
Wie löse ich folgende Aufgaben aus dem Themenbereich "Exponentielles Wachstum" ?


Kopiervorlagen:

Mathematik Unterrichtsmaterial


Mathematik Unterrichtsmaterial


Mathe Lernhilfen
zum Themenbereich

Logarithmen
& Exponentialgleichung



Mathe Lernhilfe
10. Klasse:
(Stark Verlag)

 Mathe Lernhilfen vom Stark Verlag
Mathe Klassenarbeiten
mit ausf. Lösungen
Gymnasium
10. Klasse



Mathe Lernhilfe
10. Klasse:
(Stark Verlag)

 Mathe Lernhilfen vom Stark Verlag
Mathematik üben
Algebra und Stochastik
Aufgaben mit Lösungen
10. Schuljahr


Mathe Lernhilfe
10. Klasse:
(Stark Verlag)
 Mathe Lernhilfen vom Stark Verlag
Mathematik
Wiederholung Algebra
Aufgaben
mit Lösungen
(10. Schuljahr)


Mathe Lernhilfe
10. Klasse:
(Stark Verlag)


 Mathe Lernhilfen vom Stark Verlag
Mathematik RS
Wahlpflichtgruppe II/III
Aufgaben mit Lösungen
(10. Schuljahr)

Mathe Lernhilfe
10. Klasse:
(Stark Verlag)


 Mathe Lernhilfen vom Stark Verlag
Mathematik RS
Funktionen
Aufgaben mit Lösungen
(10. Schuljahr)


Mathe Lernhilfe
10. Klasse:
(Stark Verlag)


 Mathe Lernhilfen vom Stark Verlag
Mathematik
Lineare Gleichungs-systeme

Aufgaben mit Lösungen
(10. Schuljahr)


Mathe Lernhilfe
10. Klasse:
(Stark Verlag)


 Mathe Lernhilfen vom Stark Verlag
Mathematik
Geometrie
Aufgaben mit Lösungen
(10. Schuljahr)



Musteraufgaben zum Thema Logarithmus


 -> weitere Lernhilfen


->  Themenauswahl



->  Fach Mathematik
des Schulportals




STARK LERNHILFEN
im Überblick



EXPONENTIELLES WACHSTUM:

 Aufgabe 1) 

Im Juli 2008 lebten im Hongkong nach Schätzungen 7 018 636 Menschen. Das Bevölkerungswachstum beträgt ca. 0, 532 %. Wie viele Einwohner wird die Millionenstadt bei konstantem Wachstum in 20 Jahren haben?

Lösung:

 

In 20 Jahren werden in Hongkong bei konstantem Bevölkerungswachstum ca. 7.804.394 Menschen wohnen.

 Aufgabe 2) 

a) In Mexiko lebten 2008 ca. 103,3 Mio Einwohner. Gegenüber dem Vorjahr waren dies Laut CIA World Factbook 1,142% mehr. Wie viele Einwohner wird das Land bei gleichem Wachstum
in 10 Jahren haben?

Exponentielles Wachstum

In 10 Jahren werden in Mexiko bei gleichem Wachstum ca. 115,7 Mio Einwohner leben.


b) Nach wie vielen Jahren wird Mexiko bei diesem Bevölkerungswachstum
110 Mio Einwohner haben?

Exponentielles Wachstum
Exponentielles Wachstum


Antwort: Nach 5,5 Jahren wird Mexiko wohl bei gleichem Wachstum 110 Mio Einwohner haben.



EXPONENTIELLER VERFALL
:



 Aufgabe 3) 

In einem See nimmt die Helligkeit pro Meter Wassertiefe um 18% ab. An der Oberfläche beträgt die Helligkeit noch 100 LUX (Lichteinheit). Wie viele Lichteinheiten sind es noch in 10 m Wassertiefe?

Lösung:

Exponentieller Verfall


Antwort: In 10 m Wassertiefe sind nur noch 13,74 LUX zu messen.


 Aufgabe 4) 

Ein radioaktives Material zerfällt so, dass seine Menge stündlich um 9,2 % abnimmt.
Nach wie vielen ganzen Stunden ist erstmals weniger als 1/5 der Anfangsmenge vorhanden?

Lösung:

Exponentieller Verfall
Antwort: Nach 17 Stunden ist erstmals weniger als 1/5 der Anfangsmenge vorhanden.




 Aufgabe 5) 

Bei 0°C Außentemperatur nimmt die Temperatur eines Heißgetränkes in der Thermoskanne
stündlich um 14 % ab. Nach 4 Stunden werden in der Kanne 54 °C gemessen.
Wie heiß war das Getränk beim Einfüllen?

Lösung:

Exponentieller Verfall

Antwort: Das Heißgetränk hatte beim Einfüllen eine Temperatur von 98,71 °C.



 Aufgabe 6) 

Eine Tasse Tee hat eine Temperatur von 90°C. Die Raumtemperatur beträgt 20°C.
Der Tee kühlt pro Minute um etwa 6% der Differenz zwischen Raumtemperatur und der Temperatur des Tees ab. Nach t Minuten hat der Tee eine Temperatur
T = (20+ 70 0,94 t )°C.

Die Raumtemperatur soll als konstant angenommen werden.
Nach wie vielen Minuten hat der Tee eine Temperatur von 60°C?


Lösung:
zum besseren Verständnis ...

Der Wert 0,94 ergibt sich aus der 6%-igen Abkühlen des Tees pro Minute, sprich
1- 0,06 = 0,94.

Der Wert 70 aus obiger Gleichung ist die Differenz zwischen der Temperatur des Heißgetränks zu Beginn und der Raumtempertur (90°C - 20°C = 70°C)

60 = 20 + 70Exponentialfunktion 0,94 t / -20

40 = 70 Exponentialfunktion0,94 t / Exponentialfunktion70


Expontentialfunktion= 0,94 t

Expontentialfunktion= 0,94 t

Exponentialfunktion

   t = 9,04 min
Exponentialfunktion- Tee


© www.schule-studium.de  
Das Schulportal der Pfalz mit vielen Infos rund um Schule und Studium
Lernhilfen, Interpretationshilfen, Lektüren, Kopiervorlagen, Arbeitsmaterialien für die Schule u.v.m.

Surftipp:Besuchen Sie doch auch eine der folgenden Plattformen:
-> Englisch Unterrichtsmaterial -> Mathe Unterrichtsmaterial -